当前位置:首页 > 实用范文

中考数学几何证明题

时间:2025-05-08 07:26:01
中考数学几何证明题[本文共4559字]

中考几何证明题

一、证明两线段相等1、真题再现

18.如图3,在梯形abcd中,ad∥bc,ea⊥ad,m是ae上一点,

2.如图,在△abc中,点p是边ac上的一个动点,过点p作直线mn∥bc,设mn交

∠bca的平分线于点e,交∠bca的外角平分线于点f. (1)求证:pe=pf;

(2)*当点p在边ac上运动时,四边形bcfe可能是菱形吗?说明理由;

ap 3

(3)*若在ac边上存在点p,使四边形aecf是正方形,且.求此时∠a

bc2

的大小.

c

二、证明两角相等、三角形相似及全等 1、真题再现

∠bae?∠mce,∠mbe?45.

(1)求证:be?me. (2)若ab?7,求mc的长.

b

n

e

图3

21、(8分)如图11,一张矩形纸片abcd,其中ad=8cm,ab=6cm,先沿对角线bd折叠,点c落在点c′的位置,bc′交ad于点g. (1)求证:ag=c′g;

(2)如图12,再折叠一次,使点d与点a重合,的折痕en,en角ad于m,求em的长.

2、类题演练

1、如图,分别以rt△abc的直角边ac及斜边ab向外作等边△acd、等边△abe.已知∠bac=30o,ef⊥ab,垂足为f,连结df. e (1)试说明ac=ef;

(2)求证:四边形adfe是平行四边形.

22、(9分)ab是⊙o的直径,点e是半圆上一动点(点e与点a、b都不重合),

点c是be延长线上的一点,且cd⊥ab,垂足为d,cd与ae交于点h,点h与点a不重合。

(1)(5分)求证:△ahd∽△cbd

(2)(4分)连hb,若cd=ab=2,求hd+ho的值。

a

o d

b

e 20.如图9,四边形abcd是正方形,be⊥bf,be=bf,ef与bc交于点g。 (1)求证:△abe≌△cbf;(4分)

(2)若∠abe=50o,求∠egc的大小。(4分)

c

b

图9

第20题图

如图8,△aob和△cod均为等腰直角三角形,∠aob=∠cod=90o,d在ab上. (1)求证:△aoc≌△bod;(4分) (2)若ad=1,bd=2,求cd的长.(3分)

o

图8 2、类题演练

1、(肇庆2014) (8分)如图,已知∠acb=90°,ac=bc,be⊥ce于e,ad⊥ce于d,

ce与ab相交于f. (1)求证:△ceb≌△adc; e (2)若ad=9cm,de=6cm,求be及ef的长.

ac

bc、cd、da上的2、(佛山2014)已知,在平行四边形abcd中,efgh分别是ab、

点,且ae=cg,bf=dh,求证:?aeh≌?cgf

b f

c

3、(茂名2014)如图,已知oa⊥ob,oa=4,ob=3,以ab为边作矩形c abcd,使

ad=a,过点d作de垂直oa的延长线交于点e. (1)证明:△oab∽△eda; bd (2)当a为何值时,△oab≌△eda?*请说明理由,并求此时点 c到oe的距离. o a e

图1

三、证明两直线平行 1、真题再现

(2014年)22.(10分)如图10-1,在平面直角坐标系xoy中,点m在x轴的正半轴上, ⊙m交x轴于 a、b两点,交y轴于c、d两点,且c为ae的中点,ae交y轴于g点,若点a的坐标为(-2,0),ae?8 (1)(3分)求点c的坐标.

(2)(3分)连结mg、bc,求证:mg∥bc

图10-1

2、类题演练

1、(湛江2014) (10分)如图,在□abcd中,点e、f是对角线bd上的两点,且be=df.

d

求证:(1)△abe≌△cdf;(2)ae∥cf.c

四、证明两直线互相垂直 1、真题再现

18.(7分)如图7,在梯形abcd中,ad∥bc, ab?dc?ad,

?adc?120.

(1)(3分)求证:bd?dc

b

c

bd (2)(4分)若ab?4,求梯形abcd的面积

图7

o a

e 图2

2、类题演练

1.已知:如图,在△abc中,d是ab边上一点,⊙o过d、b、c三点,?doc?2?acd?90?.

(1)求证:直线ac是⊙o的切线;

(2)如果?acb?75?,⊙o的半径为2,求bd的长.

2、如图,以△abc的一边ab为直径作⊙o,⊙o与bc边的交点d恰好为bc的中点.过点d作⊙o的切线交ac边于点e.

(1)求证:de⊥ac;

(2)若∠abc=30°,求tan∠bco的值.(第2题图) 3.(2014年深圳二模) 如图所示,矩形abcd中,点e在cb的延长线上,使ce=ac,连结ae,点f是ae的中点,连结bf、df,求证:bf⊥

df

cd于f,若⊙o的半径为r求证:ae·af=2 r

2、类题演练

1.在△abc中,ac=bc,∠acb=90°,d、e是直线ab上两点.∠dce=45° (1)当ce⊥ab时,点d与点a重合,显然de=ad+be(不必证明) (2)如图,当点d不与点a重合时,求证:de=ad+be

(3)当点d在ba的延长线上时,(2)中的结论是否成立?画出图形,说明理由.

2.(本小题满分10分)

如图,已知△abc,∠acb=90o,ac=bc,点e、f在ab上,∠ecf=45o,(1)求证:△acf∽△bec(5分)

(2)设△abc的面积为s,求证:af·be=2s(3)

3.(2)如图,ab为⊙o的直径,bc切⊙o于b,ac交⊙o于d.

①求证:ab=ad·ac. a ②当点d运动到半圆ab什么位置时,△abc为等腰直角三角形,为什么?

五、证明比例式或等积式 1、真题再现

1.已知⊙o的直径ab、cd互相垂直,弦ae交

第3题图

b

第3(2)题图

c

4、(本小题满分9分)

如图,ab为⊙o的直径,劣弧bc?b ……此处隐藏1692个字……形; ②将ce变为△abc的内角平分线。(如图2)

附加题:探究bd、ce满足什么条件时,线段fg的长与△abc的周长存在一定的数量关系,并给出证明。

9. 两块等腰直角三角板△abc和△dec如图摆放,其中∠acb =∠dce = 90°,f是de的中点,h是ae的中点,g是bd的中点.

(1)如图1,若点d、e分别在ac、bc的延长线上,通过观察和测量,猜想fh和fg的数量关系为_______和位置关系为______;

(2)如图2,若将三角板△dec绕着点c顺时针旋转至ace在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;

(2)如图3,将图1中的△dec绕点c顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.

ch

g

a图3 图1 图2

7. 在四边形abcd中,对角线ac平分∠dab.

(1)如图①,当∠dab=120°,∠b=∠d=90°时,求证:ab+ad=ac.

(2)如图②,当∠dab=120°,∠b与∠d互补时,线段ab、ad、ac有怎样的数量关系?写出你的猜想,并给予证明.

(3)如图③,当∠dab=90°,∠b与∠d互补时,线段ab、ad、ac有怎样的数量关系?写出你的猜想,并给予

10. 已知△abc中,ab=ac=3,∠bac=90°,点d为bc上一点,把一个足够大的直角三角板的直角顶点放

在d处.

(1)如图①,若bd=cd,将三角板绕点d逆时针旋转,两条直角边分别交ab、ac于点e、点f,求出重叠部分aedf的面积(直接写出结果).

(2)如图②,若bd=cd,将三角板绕点d逆时针旋转,使一条直角边交ab于点e、另一条直角边交ab的延长线于点f,设ae=x,重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围. (3)若bd=2cd,将三角板绕点d逆时针旋转,使一条直角边交ac于点f、另一条直角边交射线ab于点e.设cf=x(x>1),重叠部分的面积为y,(本文来自WwW.)求出y与x的函数关系式,并写出自变量x的取值范围.

2、如图,△abc中,∠bac=90°,ad⊥bc,de⊥ab,df⊥ac,若ab=kac,试探究be与cf的数量关系。

3、如图,在△abc和△pqd中,ac=kbc,dp=kdq,∠c=∠pdq,d、e分别是ab、ac的中点,点p在直线bc上,连接eq交pc于点h。猜想线段eh与ac的数量关系,并证明你的猜想,若证明有困难,则可选k=1证明之。

4、在△abc中,o是ac上一点,p、q分别是ab、bc上一点,∠b=45°,∠poq=135°,bc=kab,oc=mao。试说明op与oq是数量关系,选择条件:(1)m=1,(2)m=k=1。

2014年中考几何经典证明题(二)

1、如图,△abc中,∠bac=90°,ad⊥bc,e为cb延长线上一点,且∠eab=∠bad,设dc=kbd,试探究ec与ea的数量关系。

5、如图,△abc中,ad是bc边上的中线,∠cad=∠b,ac=kab,e在ad延长线上,∠ced=∠adb,探究ae与ad的关系。

6、如图,∠bac=90°,ad⊥bc,de⊥ab, ab=kac,探究be与ae是数量关系。

第五篇:广西南宁历年中考数学简单几何证明题

2014年

23.将图8(1)中的矩形abcd沿对角线ac剪开,再把△abc沿着ad方向平移,得到图8(2)中的△a?bc?,除△adc与△c?ba?全等外,你还可以指出哪几对全等的三...角形(不能添加辅助线和字母)?请选择其中一对加以证明.

b c

图8(2)

?

2014年

21.如图10,在△abc中,点d,e分别是ab,ac边的中点,若把△ade绕着点e顺时针旋转180°得到△cfe.

(1)请指出图中哪些线段与线段cf相等;

(2)试判断四边形dbcf是怎样的四边形?证明你的结论.

bf图10

2014年

21.如图8,在△abc中,d是bc的中点,de?ab,df?ac,垂足分别是e,f,be?cf.

(1)图中有几对全等的三角形?请一一列出; (2)选择一对你认为全等的三角形进行证明.

(注意:在试题卷上作答无效) .........

e d 图8 c

2014年

23.如图11,pa、pb是半径为1的⊙o的两条切线,点a、b分别为切点,?apb?60°,op与弦ab交于点c,与⊙o交于点

d.

(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形; (2)求阴影部分的面积(结果保留π).

图11

2014年

21.某厂房屋顶呈人字架形(等腰三角形),如图8所示,已知ac?bc?8m,?a?30°,cd?ab,于点d.

(1)求?acb的大小.

(2)求ab的长度.

c a d 图8 b

23.如图10,已知rt△abc≌rt△ade,?abc??ade?90°,bc与de相交于

eb.点f,连接cd,

(1)图中还有几对全等三角形,请你一一列举.

(2)求证:cf?ef.

a df b c 图10

2014年

23.如图,点b、f、c、e在同一直线上,并且bf=ce,∠b=∠c. (1)请你只添加一个条件(不再加辅助线),使得△abc≌△def.

你添加的条件是:. f (2)添加了条件后,证明△abc≌△def.

2014年

22.如图所示,∠bac=∠abd=90°,ac=bd,点o是ad,bc

的交点,点e是ab的中点.

(1)图中有哪几对全等三角形?请写出来;

(2)试判断oe和ab的位置关系,并给予证明.

2014年

23、如图11,在菱形abcd中,ac是对角线,点e、f

分别是边bc、ad的中点。 c e

(1)求证:abe≌cdf。

(2)若∠b=60°,ab=4,求线段ae的长。

图11

访问此文后还关注了以下范文:

2014年全国各地中考数学压轴题专集一几何证明题

广西南宁历年中考数学几何综合证明题(第25题)

【压轴题 精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说理(含2014试题,含详解)

中考几何证明题集锦

中考平面几何证明题

《中考数学几何证明题[本文共4559字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式